banner
홈페이지 / 소식 / ABO 유전자형은 돼지의 GalNAc 수준을 조절하여 장내 미생물을 변경합니다
소식

ABO 유전자형은 돼지의 GalNAc 수준을 조절하여 장내 미생물을 변경합니다

Sep 06, 2023Sep 06, 2023

Nature 606권, 358~367페이지(2022)이 기사 인용

22,000회 액세스

33 인용

92 알트메트릭

측정항목 세부정보

장내 미생물군집의 구성은 개인마다 상당히 다르며 건강과 상관관계가 있습니다1. 숙주 유전학이 이러한 변이에 기여하는 정도와 방법을 이해하는 것은 필수적이지만, 특히 인간에서 연관성이 거의 복제되지 않았기 때문에 어려운 것으로 입증되었습니다2. 여기서 우리는 대규모 모자이크 돼지 개체군의 장내 미생물 구성에 대한 숙주 유전자형의 영향을 연구합니다. 우리는 악화된 유전적 다양성과 환경 균일성 조건 하에서 미생물군 구성과 특정 분류군의 풍부함이 유전된다는 것을 보여줍니다. 우리는 Erysipelotrichaceae 종의 풍부함에 영향을 미치는 정량적 특성 유전자좌를 매핑하고 그것이 인간의 ABO 혈액형을 뒷받침하는 N-아세틸-갈락토사미닐-트랜스퍼라제를 코딩하는 유전자의 2.3kb 결실에 의해 발생한다는 것을 보여줍니다. 우리는 이 삭제가 균형 선택 하에서 ≥350만년 된 종간 다형성임을 보여줍니다. 우리는 이것이 장내 N-아세틸-갈락토사민의 농도를 감소시켜 N-아세틸-갈락토사민을 수입하고 분해할 수 있는 Erysipelotrichaceae의 풍부함을 감소시킨다는 것을 입증합니다. 우리의 결과는 이러한 연관성을 뒷받침하는 분자 메커니즘에 대한 통찰력과 함께 장내 특정 박테리아의 풍부함에 대한 숙주 유전자형의 영향에 대한 매우 강력한 증거를 제공합니다. 우리의 데이터는 농촌 인구에서 동일한 효과를 식별하는 길을 열었습니다.

유기체의 생리학과 병리학에 대한 포괄적인 이해를 위해서는 숙주와 숙주의 다양한 미생물군에 대한 통합 분석이 필요하다는 사실이 점차 인식되고 있습니다1. 인간의 장내 미생물총 구성은 HDL 콜레스테롤, 공복 혈당 수치, 체질량 지수를 포함한 생리학적, 병리학적 매개변수와 연관되어 있습니다2. 가축에서 반추위 미생물군집 구성은 메탄 생산 및 사료 효율성과 관련이 있습니다3. 이러한 상관관계는 미생물군집이 숙주의 생리에 미치는 직접적인(인과적) 영향을 포함할 수 있는 숙주와 미생물군 사이의 복잡한 상호작용을 반영합니다4. 미생물군 구성과 상관관계가 있는 여러 표현형은 유전됩니다5,6. 이는 숙주의 유전자형이 부분적으로 미생물총의 구성을 결정할 수 있으며, 이는 결국 숙주의 표현형에 영향을 미칠 수 있다는 가설로 이어집니다4. 이는 미생물총의 구성이 부분적으로 유전된다는 것을 의미합니다. 설치류에 대한 연구가 이를 뒷받침하지만7 인간에 대한 증거는 설득력이 떨어집니다. 초기 보고서에서는 이란성 쌍생아에 비해 일란성 쌍생아 사이에 더 높은 미생물군 유사성을 나타내지 않았는데, 이는 숙주 유전자형의 제한된 효과를 암시합니다8. 더 나은 기반의 연구는 풍부한 분류군, 특히 Christensenellaceae9에 대한 숙주 유전학의 중요한 영향에 대한 증거를 제공했습니다. 미생물군 유전성을 뒷받침하는 유전자좌는 인간에서 식별하기가 여전히 어렵습니다. 락타아제(LCT)의 지속적인 발현을 유발하고 비피도박테리움 풍부도 감소와 관련된 변종 외에도 다른 GWAS 유전자좌는 복제하기 어려운 것으로 입증되었습니다2,10,11,12,13,14. 미생물총 구성의 유전적 구조를 더 잘 이해하려면 더 큰 규모의 인간 집단에 대한 분석이 필요합니다.

대규모 단일위 잡식동물의 장내 미생물총 구성의 유전적 구조를 해독하기 위해 우리는 모자이크 돼지 개체군의 생성과 장내 미생물총의 종단적 특성을 보고합니다. 우리는 미생물총 구성에 대한 숙주 유전자형의 강한 영향을 관찰하고 장내 N-아세틸-갈락토사민 농도를 조절하여 이 대사산물을 탄소원.

7,500) mosaic population by intercrossing the offspring of 61 F0 founders from four Chinese and four western breeds for more than 10 generations (Supplementary Table 1 and Extended Data Fig. 1). Animals were reared in uniform housing and feeding conditions. We analysed more than 200 phenotypes (pertaining to body composition, physiology, disease resistance and behaviour), obtained transcriptome, epigenome and chromatin interaction data from multiple tissues, and collected plasma metabolome and microbiome data in up to 954 F6 and 892 F7 animals. The F0 animals were whole-genome sequenced at an average depth of 28.4-fold, and the F6 and F7 animals were sequence at an average depth of 8.0-fold. We called genotypes at 23.8 million single-nucleotide polymorphisms (SNPs) and 6.4 million insertion–deletions (indels) with a minor allele frequency (MAF) of ≥0.03 (>1/100 bp). The nucleotide diversity (π) (that is, the proportion of nucleotide sites that differ between homologous sequences in two breeds) between two Chinese breeds and between two European breeds was similar to that between Homo sapiens and Homo neanderthalensis (~3 × 10−3)15, whereas the π between a Chinese and a European breed approached half of that between human and chimpanzee (~4.3 × 10−3)16. The proportion of the eight founder genomes in F6 and F7 ranged from 11.2% to 14.7% at the genome level, and from 4.9% to 22.1% at the chromosome level. The median number of variants in high linkage disequilibrium (LD) (r2 ≥ 0.9) with an index variant was 30, and the median maximal distance with a variant in high LD (r2 ≥ 0.9) was 54 kb (Extended Data Fig. 1)./p>5% were filtered out. Non-redundant MAGs were generated by dRep (v.2.3.2) at threshold of 99% average nucleotide identity (ANI)92./p>

2-fold higher in domestic pigs than in human populations, as previously reported111,112,113. Nucleotide diversities between Chinese founder breeds and between European founder breeds were ~3.6x10−3 and ~2.5x10−3, respectively, i.e. 1.44-fold and 1.25-fold higher than the respective within-breed π-values. These π-values are of the same order of magnitude as the sequence divergence between Homo sapiens and Neanderthals/Denosivans (~3x10−3, ref. 15). By comparison, π-values between Africans, Asians and Europeans are typically ≤ ~1x10−3 (ref. 109). The nucleotide diversity between Chinese and European breeds averaged ~4.3x10−3. This π-value is similar to the divergence between M. domesticus and M. castaneus114, and close to halve the ~1% difference between chimpanzee and human16. Note that Chinese and European pig breeds are derived from Chinese and European wild boars, respectively, which are thought to have diverged ~1 million years ago27, while M. domesticus and M. castaneus are thought to have diverged ≤ 500,000 years ago114. (d) Autosome-specific estimates of the genomic contributions of the eight founder breeds in the F6 and F7 generation. We used a linear model incorporating all variants to estimate the average contribution of the eight founder breeds in the F6 and F7 generation at genome and chromosome level56. At genome-wide level, the proportion of the eight founder breed genomes ranged from 11.2% (respectively 11.5%) to 14.1% (14.7%) in the F6 (F7) generations. At chromosome-specific level, the proportion of the eight founder breeds ranged from 6.7% (respectively 4.9%) to 20.7% (22.1%) in the F6 (F7) generations. The genomic contribution of the eight founder breeds in the F6 and F7 generation is remarkably uniform and close to expectations (i.e. 12.5%) both at genome-wide and chromosome-wide level, suggesting comparable levels of genetic diversity across the entire genome. This does not preclude that more granular examination may reveal local departures from expectations, or under-representation of incompatible allelic combinations at non-syntenic loci. (e-f) Indicators of achievable mapping resolution in the F6 generation: (e) Frequency distribution (density) of the number of variants in high LD (r2 ≥ 0.9) with an “index” variant (was computed separately for all variants considered sequentially as the “index”), corresponding to the expected size of “credible sets” in GWAS115. The red vertical line corresponds to the genome-wide median. The green vertical line corresponds to the mapping resolution achieved in this study for the ABO locus (see hereafter). (f) Frequency distribution (density) of the maximum distance between an index variant and a variant in high LD (r2 ≥ 0.9) with it, defining the spread of credible sets. Red and green vertical lines are as in (D)./p>95% of day 120 and 240 faeces and caecum content samples of both F6 and F7 generations, hence defined as core bacterial taxa. (b) The compositions of the porcine and human intestinal microbiota are closer to each other than either is to that of the mouse. Boxplots are as is Fig. 1c. The number of samples available for analysis were 1281 pigs, 106 humans and 6 mice. (c) Abundances (F6-F7 averages when available) of the 43 families represented in Fig. 1b in the seven sample types relative to the sample type in which they are the most abundant (red – blue scale). The families are ordered according to the sample type in which they are the most abundant. The colour-code for phyla is as in Fig. 1b. Columns are added for comparison with mouse and human. Mouse data are from Fig. 1 in Suzuki & Nachman116, and human data from Fig. 6 in Vuik et al117. P_I: proximal ileum, D_IL: distal ileum, C: caecum, CO: colon, RE: rectum, F: faeces. The families differing the most with regards to location-specific distribution between species include Helicobacteriaceae, Veillonellaceae, Lactobacillaceae and Streptocaccaceae./p> 10 MYA. It will be interesting to study larger numbers of warthog to see whether the same 2.3 kb deletion exists in this and other related species as well. (b) Alignment of ~900 base pairs of the O alleles of domestic pigs (Bamaxian), European and Asian wild boars, and Sus cebufrons demonstrating that these are identical-by-descent. The SINE element that is presumed to have mediated the recombinational event that caused to 2.3 kb deletion is highlighted in red. Context: To further support their identity-by-descent we aligned ~900 base pairs (centred on the position of the 2.3 kb deletion) of the O alleles of domestic pig, European and Asian wild boars and Sus cebifrons. The sequences were nearly identical further supporting our hypothesis. It is noteworthy that the old age of the “O” allele must have contributed to the remarkable mapping resolution (≤3 kb) that was achieved in this study. In total, 42 variants were in near perfect LD (r2 ≥ 0.9) with the 2.3 kb deletion in the F0 generation, spanning 2,298 bp (1,522 on the proximal side, and 762 on the distal side of the 2.3 kb deletion). This 2.3 kb span is lower than genome-wide expectations (17th percentile), presumably due to the numerous cross-overs that have accrued since the birth of the 2.3 kb deletion that occurred in the distant past. Yet the number of informative variants within this small segment is higher than genome-wide average of (57% percentile) also probably due at least in part to the accumulation of numerous mutations since the remote time of coalescence of the A and O alleles (see Fig. 1d in main text). (c) QQ plots for the effect of AO genotype on 150 phenotypes pertaining to meat quality, growth, carcass composition, hematology, health, and other phenotypes in the F6 and F7 generation. P-values were obtained using a mixed model followed by meta-analysis (weighted Z score) across the F6 and F7 generations as described in Methods. log-transformed p-values used for the QQ plot are nominal and two-sided. Context: Our findings in suidae are reminiscent of the trans-species polymorphism of the ABO gene in primates attributed to balancing selection26. The phenotype driving balancing selection remain largely unknown yet a tug of war with pathogens is usually invoked: synthesized glycans may affect pathogen adhesion, toxin binding or act as soluble decoys, while naturally occurring antibodies may be protective20,44. In humans, the O allele may protect against malaria118, E. Coli and Salmonella enteric infection119, SARS-CoV-142, SARS-CoV-243 and schistosomiasis120,121,122, while being a possible risk factor for cholera123, H. pylori124 and norovirus infection125. Whatever the underlying selective force, it appears to have operated independently in at least two mammalian branches (primates and suidae), over exceedingly long periods of time, and over broad geographic ranges, hence pointing towards its pervasive nature. To gain insights in what selective forces might underpin the observed balanced polymorphism, we tested the effect of porcine AO genotype on >150 traits measured in the F6 and F7 generations pertaining to carcass composition, growth, meat quality, hematological parameters, disease resistance and behaviour. No significant effects were observed when accounting for multiple testing, including those pertaining to immunity and disease resistance. (d) Expression profile of the AO gene in a panel of adult and embryonic porcine tissues (own RNA-Seq data)./p>